题目内容

【题目】如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.

【答案】(Ⅰ)证明:∵在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2, ∴A1D∥AE,AE⊥BC,AE=BE=
∵A1A=4,A1E=
∴A1E2+AE2= ,∴AE⊥A1E,
∵A1E∩BC=E,∴AE⊥平面A1BC,
∵A1D∥AE,∴A1D⊥平面A1BC.
(Ⅱ)解:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.

易知A1(0,0, ),B( ,0,0),C(﹣ ,0,0),
A(0, ,0),D(0,﹣ ),B1 ,﹣ ),
设平面A1BD的法向量为 =(x,y,z),
,可取
设平面B1BD的法向量为 =(x,y,z),
,可取
cos< >=
又∵该二面角为钝角,
∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣
【解析】(1)先证AE⊥平面A1BC,再证A1D∥AE即可‘’(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网