题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为4 ,求c.

【答案】解:(Ⅰ)∵b(1+cosC)=c(2﹣cosB), ∴由正弦定理可得:sinB+sinBcosC=2sinC﹣sinCcosB,可得:sinBcosC+sinCcosB+sinB=2sinC,
∴sinA+sinB=2sinC,
∴a+b=2c,即a,c,b成等差数列;
(Ⅱ)∵C= ,△ABC的面积为4 = absinC= ab,
∴ab=16,
∵由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab,
∵a+b=2c,
∴可得:c2=4c2﹣3×16,解得:c=4
【解析】(Ⅰ)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinA+sinB=2sinC,从而可求a+b=2c,即a,c,b成等差数列;(Ⅱ)由已知利用三角形面积公式可求ab=16,进而利用余弦定理可得:c2=(a+b)2﹣3ab,结合a+b=2c,即可解得c的值.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网