题目内容
【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
根据下表信息解答以下问题:
休假次数 | 0 | 1 | 2 | 3 |
人数 | 5 | 10 | 20 | 15 |
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
【答案】
(1)解:函数f(x)=x2﹣ηx﹣1过(0,﹣1)点,在区间(4,6)上有且只有一个零点,则必有 ,解得: η< ,
所以,η=4或η=5
当η=4时, ,
当η=5时, P,
又η=4与η=5 为互斥事件,由互斥事件有一个发生的概率公式,
所以 ;
(2)解:从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,则ξ的可能取值分别是0,1,2,3,
于是
= ,
,
,
从而ξ的分布列:
ξ | 0 | 1 | 2 | 3 |
P |
ξ的数学期望: .
【解析】(1)由题意有函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点,进行等价转化为不等式组解出,在有互斥事件有一个发生的概率公式求解即可;(2)由题意利用ξ表示这两人休年假次数之差的绝对值,利用随机变量的定义及随机变量分布列的定义列出随机变量ξ的分布列,在利用随机变量期望的定义求出其期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列,以及对函数的零点的理解,了解函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.