题目内容
【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求| |;
(2)已知点D是AB上一点,满足 =λ ,点E是边CB上一点,满足 =λ . ①当λ= 时,求 ;
②是否存在非零实数λ,使得 ⊥ ?若存在,求出的λ值;若不存在,请说明理由.
【答案】
(1)解:△ABC中,CA=1,CB=2,∠ACB=60°,
由余弦定理得,
AB2=CA2+CB2﹣2CACBcos∠ACB
=12+22﹣2×1×2×cos60°
=3,
∴AB= ,即| |= ;
(2)解:①λ= 时, = , = ,
∴D、E分别是BC,AB的中点,
∴ = + = + ,
= ( + ),
∴ =( + ) ( + )
= + + +
=﹣ ×12+ ×1×2×cos120°+ ×2×1×cos60°+ ×22
= ;
②假设存在非零实数λ,使得 ⊥ ,
由 =λ ,得 =λ( ﹣ ),
∴ = + = +λ( ﹣ )=λ +(1﹣λ) ;
又 =λ ,
∴ = + =( ﹣ )+λ(﹣ )=(1﹣λ) ﹣ ;
∴ =λ(1﹣λ) ﹣λ +(1﹣λ)2 ﹣(1﹣λ)
=4λ(1﹣λ)﹣λ+(1﹣λ)2﹣(1﹣λ)
=﹣3λ2+2λ=0,
解得λ= 或λ=0(不合题意,舍去);
即存在非零实数λ= ,使得 ⊥ .
【解析】(1)利用余弦定理求出AB的长即得| |;(2)①λ= 时,D、E分别是BC,AB的中点,求出 、 的数量积即可;②假设存在非零实数λ,使得 ⊥ ,利用 、 分别表示出 和 ,
求出 =0时的λ值即可.
【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
根据下表信息解答以下问题:
休假次数 | 0 | 1 | 2 | 3 |
人数 | 5 | 10 | 20 | 15 |
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.