题目内容

【题目】已知{an}是各项均为正数的等比数列a1+a2=2( ),a3+a4+a5=64 + +
(1)求{an}的通项公式;
(2)设bn=(an+ 2 , 求数列{bn}的前n项和Tn

【答案】
(1)解:设正等比数列{an}首项为a1,公比为q,由题意得: ∴an=2n1(6分)
(2)解:

∴bn的前n项和Tn=


【解析】(1)由题意利用等比数列的通项公式建立首项a1与公比q的方程,然后求解即可(2)由bn的定义求出通项公式,在由通项公式,利用分组求和法即可求解
【考点精析】利用等比数列的通项公式(及其变式)和数列的前n项和对题目进行判断即可得到答案,需要熟知通项公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网