题目内容
19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是{a|a<0或a>1}.分析 由g(x)=f(x)-b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围
解答 解:∵g(x)=f(x)-b有两个零点,
∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,
由x3=x2可得,x=0或x=1
①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意
②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意
③当0<a<1时,函数f(x)单调递增,故不符合题意
④a=0时,f(x)单调递增,故不符合题意
⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点
综上可得,a<0或a>1
故答案为:{a|a<0或a>1}
点评 本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.
练习册系列答案
相关题目
10.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=$\frac{新工件的体积}{原工件的体积}$)( )
A. | $\frac{8}{9π}$ | B. | $\frac{8}{27π}$ | C. | $\frac{24(\sqrt{2}-1)^{3}}{π}$ | D. | $\frac{8(\sqrt{2}-1)^{3}}{π}$ |
4.已知复数z满足(z-1)i=1+i,则z=( )
A. | -2-i | B. | -2+i | C. | 2-i | D. | 2+i |
11.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,P是C的左支上一点,A(0,6$\sqrt{6}$).当△APF周长最小时,该三角形的面积为12$\sqrt{6}$.
8.“sinα=cosα”是“cos2α=0”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
9.过三点A(1,0),B(0,$\sqrt{3}$),C(2,$\sqrt{3}$)则△ABC外接圆的圆心到原点的距离为( )
A. | $\frac{5}{3}$ | B. | $\frac{\sqrt{21}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\frac{4}{3}$ |