题目内容
11.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,P是C的左支上一点,A(0,6$\sqrt{6}$).当△APF周长最小时,该三角形的面积为12$\sqrt{6}$.分析 利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.
解答 解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2
≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),
直线AF′的方程为$\frac{x}{-3}+\frac{y}{6\sqrt{6}}=1$与x2-$\frac{{y}^{2}}{8}$=1联立可得y2+6$\sqrt{6}$y-96=0,
∴P的纵坐标为2$\sqrt{6}$,
∴△APF周长最小时,该三角形的面积为$\frac{1}{2}×6×6\sqrt{6}$-$\frac{1}{2}×6×2\sqrt{6}$=12$\sqrt{6}$.
故答案为:12$\sqrt{6}$.
点评 本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.
练习册系列答案
相关题目
2.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )
A. | B. | C. | D. |
6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )
A. | 14斛 | B. | 22斛 | C. | 36斛 | D. | 66斛 |
16.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A. | $\frac{5}{21}$ | B. | $\frac{10}{21}$ | C. | $\frac{11}{21}$ | D. | 1 |
20.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的左、右两个焦点,若$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$<0,则y0的取值范围是( )
A. | $(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$ | B. | $(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6})$ | C. | $(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$ | D. | $(-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})$ |