题目内容
11.如图所示,在四较锥E-ABCD中,底面ABCD为矩形,CD⊥平面BEC,G是线段BE上一点,F是线段DC的中点且GF∥平面ADE,AB=BE=EC=2.(1)求证:GB=GE;
(2)若BE⊥CE,求直线DG与平面AEF所成角的正弦值.
分析 (1)取AD中点H,BC中点O,连接OE,OH,根据条件可分别以OE,OC,OH三直线为x,y,z轴,建立空间直角坐标系,可设OC=a,这样可表示出图形上各点的坐标,可求得$\overrightarrow{AD}=(0,2a,0),\overrightarrow{AE}=(\sqrt{4-{a}^{2}},a,-2)$.可设平面ADE的法向量为$\overrightarrow{n}=({x}_{1},{y}_{1},{z}_{1})$,根据$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=0}\\{\overrightarrow{n}•\overrightarrow{AE}=0}\end{array}\right.$即可求出$\overrightarrow{n}$,可设G(x,y,0),根据条件知道$\overrightarrow{n}⊥\overrightarrow{GF}$,从而得到$\overrightarrow{n}•\overrightarrow{GF}=0$,能求出G点的横坐标,根据坐标即可说明G为BE的中点,从而得出GB=GE;
(2)由BE⊥CE便可求出a=$\sqrt{2}$,带入(1)中得到的各点坐标,即可确定这些点的坐标,可设平面AEF的法向量$\overrightarrow{m}=({x}_{2},{y}_{2},{z}_{2})$,根据上面求法向量的过程求出$\overrightarrow{m}$,然后可设直线DG和平面AEF所成角为θ,则根据sinθ=$|cos<\overrightarrow{DG},\overrightarrow{m}>|$即可求出直线DG与平面AEF所成角的正弦值.
解答 解:(1)证明:根据已知,取BC边的中点O,AD的中点H,连接OE,OH,则OE,OC,OH三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示坐标系,设OC=a,则:
A(0,-a,2),B(0,-a,0),C(0,a,0),D(0,a,2),E($\sqrt{4-{a}^{2}}$,0,0),F(0,a,1);
设G(x,y,0),∴$\overrightarrow{GF}=(-x,a-y,1)$,$\overrightarrow{AD}=(0,2a,0)$,$\overrightarrow{AE}=(\sqrt{4-{a}^{2}},a,-2)$;
设平面ADE的法向量为$\overrightarrow{n}=({x}_{1},{y}_{1},{z}_{1})$,则$\overrightarrow{n}⊥\overrightarrow{AD}$,且$\overrightarrow{n}⊥\overrightarrow{AE}$;
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=2a{y}_{1}=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\sqrt{4-{a}^{2}}{x}_{1}+a{y}_{1}-2{z}_{1}=0}\end{array}\right.$;
取x1=1,则$\overrightarrow{n}=(1,0,\frac{\sqrt{4-{a}^{2}}}{2})$;
∵GF∥平面ADE;
∴$\overrightarrow{GF}⊥\overrightarrow{n}$;
∴$\overrightarrow{GF}•\overrightarrow{n}=-x+\frac{\sqrt{4-{a}^{2}}}{2}=0$;
∴$x=\frac{\sqrt{4-{a}^{2}}}{2}$;
∴$G(\frac{\sqrt{4-{a}^{2}}}{2},y)$;
∴G为BE中点;
∴GB=GE;
(2)若BE⊥CE,则BC=2$\sqrt{2}$,∴$a=\sqrt{2}$;
∴可确定以下几点坐标:
$A(0,-\sqrt{2},2)$,$E(\sqrt{2},0,0)$,$F(0,\sqrt{2},1)$,$D(0,\sqrt{2},2)$,B($0,-\sqrt{2},0$),G($\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},0$);
∴$\overrightarrow{AE}=(\sqrt{2},\sqrt{2},-2)$,$\overrightarrow{AF}=(0,2\sqrt{2},-1)$,$\overrightarrow{DG}=(\frac{\sqrt{2}}{2},-\frac{3\sqrt{2}}{2},-2)$;
设平面AEF的法向量为$\overrightarrow{m}=({x}_{2},{y}_{2},{z}_{2})$,则:
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AE}=\sqrt{2}{x}_{2}+\sqrt{2}{y}_{2}-2{z}_{2}=0}\\{\overrightarrow{m}•\overrightarrow{AF}=2\sqrt{2}{y}_{2}-{z}_{2}=0}\end{array}\right.$;
∴$\left\{\begin{array}{l}{{x}_{2}=3{y}_{2}}\\{{z}_{2}=2\sqrt{2}{y}_{2}}\end{array}\right.$,取y2=1,则$\overrightarrow{m}=(3,1,2\sqrt{2})$;
设直线DG和平面AEF所成角为θ,则sinθ=$|cos<\overrightarrow{m},\overrightarrow{DG}>|$=$\frac{|\overrightarrow{m}•\overrightarrow{DG}|}{|\overrightarrow{m}||\overrightarrow{DG}|}=\frac{4\sqrt{2}}{3\sqrt{2}•3}=\frac{4}{9}$;
即直线DG和平面AEF所成角的正弦值为$\frac{4}{9}$.
点评 考查建立空间直角坐标系,利用空间向量解决线面平行及线面角等立体几何问题的方法,线面垂直的判定定理及性质,平面法向量的概念及求法,线面平行时,直线和平面的法向量垂直,向量垂直的充要条件,以及线面角的定义及求法,弄清线面角和直线的方向向量和平面法向量夹角的关系.
A. | [2,8] | B. | [2,4] | C. | [4,8] | D. | [-1,5] |