题目内容

【题目】数列{an}的前n项和是Sn , 且Sn+ an=1,数列{bn},{cn}满足bn=log3 ,cn= . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和为Tn , 若不等式Tn<m对任意的正整数n恒成立,求m的取值范围.

【答案】解:(Ⅰ)由题意得: ,① ② ① ﹣②可得 =0,即
当n=1时 ,则 ,则{an}是以 为首项, 为公比的等比数列.
因此
(Ⅱ) ,cn= = = ..


【解析】(I)利用递推公式、等比数列的通项公式即可得出.(II)利用“裂项求和”方法即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网