题目内容
当n∈N*时,Sn=1-
+
-
+…+
-
,Tn=
+
+
+…+
.
(Ⅰ)求S1,S2,T1,T2;
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
(Ⅰ)求S1,S2,T1,T2;
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
(Ⅰ)∵当n∈N*时,Sn=1-
+
-
+…+
-
,Tn=
+
+
+…+
.
∴S1=1-
=
,S2=1-
+
-
=
,T1=
=
,T2=
+
=
(2分)
(Ⅱ)猜想:Sn=Tn(n∈N*),即:
1-
+
-
+…+
-
=
+
+
+…+
(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-
+
-
+…+
-
=
+
+
+…+
(8分)
则:Sk+1=Sk+
-
=Tk+
-
(10分)
=
+
+
+…+
+
-
(11分)
=
+
+…+
+
+(
-
)
=
+
+…+
+
=Tk+1,
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
∴S1=1-
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
4 |
7 |
12 |
1 |
1+1 |
1 |
2 |
1 |
2+1 |
1 |
2+2 |
7 |
12 |
(Ⅱ)猜想:Sn=Tn(n∈N*),即:
1-
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2k-1 |
1 |
2k |
1 |
k+1 |
1 |
k+2 |
1 |
k+3 |
1 |
2k |
则:Sk+1=Sk+
1 |
2k+1 |
1 |
2(k+1) |
1 |
2k+1 |
1 |
2(k+1) |
=
1 |
k+1 |
1 |
k+2 |
1 |
k+3 |
1 |
2k |
1 |
2k+1 |
1 |
2(k+1) |
=
1 |
k+2 |
1 |
k+3 |
1 |
2k |
1 |
2k+1 |
1 |
k+1 |
1 |
2(k+1) |
=
1 |
(k+1)+1 |
1 |
(k+1)+2 |
1 |
2k+1 |
1 |
2(k+1) |
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)
练习册系列答案
相关题目