题目内容
已知f(n)=
+
+…+
(n∈N*),则下列结论正确的是( )
1 |
n+1 |
1 |
n+2 |
1 |
3n |
A.f(1)=
| ||||||
B.f(k+1)-f(k)=
| ||||||
C.f(2)=
| ||||||
D.f(k+1)-f(k)=
|
∵f(n)=
+
+…+
(n∈N*),
∴f(1)=
+
=
,f(2)=
+
+
+
+
,f(k+1)-f(k)=
+
+…+
-(
+
+…+
)=
+
-
.
故选D.
1 |
n+1 |
1 |
n+2 |
1 |
3n |
∴f(1)=
1 |
2 |
1 |
3 |
5 |
6 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
k+2 |
1 |
k+3 |
1 |
3(k+1) |
1 |
k+1 |
1 |
k+2 |
1 |
3k |
1 |
3k+1 |
1 |
3k+2 |
2 |
3k+3 |
故选D.
练习册系列答案
相关题目