题目内容

已知f(n)=
1
n+1
+
1
n+2
+…+
1
3n
(n∈N*),则下列结论正确的是(  )
A.f(1)=
1
2
B.f(k+1)-f(k)=
1
3k+1
+
1
3k+2
+
1
3k+3
C.f(2)=
1
3
+
1
6
D.f(k+1)-f(k)=
1
3k+1
+
1
3k+2
-
2
3k+3
f(n)=
1
n+1
+
1
n+2
+…+
1
3n
(n∈N*)

f(1)=
1
2
+
1
3
=
5
6
,f(2)=
1
2
+
1
3
+
1
4
+
1
5
+
1
6
,f(k+1)-f(k)=
1
k+2
+
1
k+3
+…+
1
3(k+1)
-(
1
k+1
+
1
k+2
+…+
1
3k
)=
1
3k+1
+
1
3k+2
-
2
3k+3

故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网