题目内容
【题目】已知中心在原点,焦点在 轴上的椭圆过点,离心率为, , 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.
(1)求椭圆的标准方程;
(2)是否存在经过点且斜率为的直线与椭圆交于不同两点和,使得向量与共线?如果存在,求出直线方程;如果不存在,请说明理由.
【答案】(1)(2)不存在
【解析】试题分析:(1)依题意得解得, .
所以椭圆的方程为.(2)假设存在过点且斜率为的直线适合题意,则因为直线的方程为: ,于是联立方程, .由直线与椭圆交于不同两点和知,
, .令, , ,由韦达定理得出结论, ,根据向量与共线,可得, ,这与矛盾.
试题解析:
(1)设椭圆的方程为,
.依题意得解得, .
所以椭圆的方程为.
(2)假设存在过点且斜率为的直线适合题意,则因为直线的方程为: ,于是联立方程, .
由直线与椭圆交于不同两点和知,
, .
令, , ,
, ,
,
由题知, , .
从而,根据向量与共线,可得, ,这与矛盾.
故不存在符合题意的直线.
【题目】随着我国经济的快速发展,民用汽车的保有量也迅速增长.机动车保有量的发展影响到环境质量、交通安全、道路建设等诸多方面.在我国,尤其是大中型城市,机动车已成为城市空气污染的重要来源.因此,合理预测机动车保有量是未来进行机动车污染防治规划、道路发展规划等的重要前提.从2012年到2016年,根据“云南省某市国民经济和社会发展统计公报”中公布的数据,该市机动车保有量数据如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
机动车保有量(万辆) | 169 | 181 | 196 | 215 | 230 |
(1)在图所给的坐标系中作出数据对应的散点图;
(2)建立机动车保有量关于年份代码的回归方程;
(3)按照当前的变化趋势,预测2017年该市机动车保有量.
附注:回归直线方程中的斜率和截距的最小二乘估计公式分别为:
, .