题目内容
在ΔABC中,顶点A,B, C所对三边分别是a,b,c已知B(-1, 0), C(1, 0),且b,a, c成等差数列.
(I )求顶点A的轨迹方程;
(II) 设顶点A的轨迹与直线y=kx+m相交于不同的两点M、N,如果存在过点P(0,-)的直线l,使得点M、N关于l对称,求实数m的取值范围
(I )求顶点A的轨迹方程;
(II) 设顶点A的轨迹与直线y=kx+m相交于不同的两点M、N,如果存在过点P(0,-)的直线l,使得点M、N关于l对称,求实数m的取值范围
(1)(2)当k=0时,m的取值范围为;
当k≠0时,m的取值范围为().
当k≠0时,m的取值范围为().
(I ) 且b,a, c成等差数列结合椭圆的定义求得轨迹方程;(II)将y=kx+m与椭圆方程联立,判别式大于0,根据点关于直线对称,得k、m的关系
解:(I)由题知得b+c=4,即|AC|+|AB|=4(定值).
由椭圆定义知,顶点A的轨迹是以B、C为焦点的椭圆(除去左右顶点),
且其长半轴长为2,半焦距为1,于是短半轴长为.
∴ 顶点A的轨迹方程为.………………………………4分
(II)由
消去y整理得(3+4k2)x2+8kmx+4(m2-3)=0.∴ Δ=(8km)2-4(3+4k2)×4(m2-3)>0,
整理得:4k2>m2-3.①令M(x1,y1),N(x2,y2),则
设MN的中点P(x0,y0),则
,…………………7分
i)当k=0时,由题知,.……………………………8分
ii)当k≠0时,直线l方程为,由P(x0,y0)在直线l上,得,得2m=3+4k2.②把②式代入①中可得2m-3>m2-3,解得0<m<2.又由②得2m-3=4k2>0,解得.∴ .验证:当(-2,0)在y=kx+m上时,得m=2k代入②得4k2-4k+3=0,k无解.即y=kx+m不会过椭圆左顶点.同理可验证y=kx+m不过右顶点.∴ m的取值范围为().………11分
综上,当k=0时,m的取值范围为;当k≠0时,m的取值范围为().
解:(I)由题知得b+c=4,即|AC|+|AB|=4(定值).
由椭圆定义知,顶点A的轨迹是以B、C为焦点的椭圆(除去左右顶点),
且其长半轴长为2,半焦距为1,于是短半轴长为.
∴ 顶点A的轨迹方程为.………………………………4分
(II)由
消去y整理得(3+4k2)x2+8kmx+4(m2-3)=0.∴ Δ=(8km)2-4(3+4k2)×4(m2-3)>0,
整理得:4k2>m2-3.①令M(x1,y1),N(x2,y2),则
设MN的中点P(x0,y0),则
,…………………7分
i)当k=0时,由题知,.……………………………8分
ii)当k≠0时,直线l方程为,由P(x0,y0)在直线l上,得,得2m=3+4k2.②把②式代入①中可得2m-3>m2-3,解得0<m<2.又由②得2m-3=4k2>0,解得.∴ .验证:当(-2,0)在y=kx+m上时,得m=2k代入②得4k2-4k+3=0,k无解.即y=kx+m不会过椭圆左顶点.同理可验证y=kx+m不过右顶点.∴ m的取值范围为().………11分
综上,当k=0时,m的取值范围为;当k≠0时,m的取值范围为().
练习册系列答案
相关题目