题目内容
给定椭圆
:
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 已知椭圆
的两个焦点分别是
,椭圆
上一动点
满足
.
(Ⅰ)求椭圆
及其“伴随圆”的方程;
(Ⅱ)过点P![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832527509.png)
作直线
,使得直线
与椭圆
只有一个交点,且
截椭圆
的“伴随圆”所得的弦长为
.求出
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832262766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832293619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832324292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832356544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148324021092.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832449433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832465942.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
(Ⅱ)过点P
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832527509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832621546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832636285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832636285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832636285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832746350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832808376.png)
(Ⅰ)
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832855908.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832839577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832855908.png)
(1)中据椭圆定义及伴椭圆定义容易求出方程;
(2)线
与椭圆
只有一个交点即直线与椭圆相切,
,
截椭圆
的“伴随圆”所得的弦长为
,利用直线与圆弦心距,点到直线距离公式,表示出弦长
解:(Ⅰ)由题意得:
得
,半焦距
....2分
则
椭圆
的方程为
“伴随圆”的方程为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832839577.png)
(Ⅱ)设过点
,且与椭圆有一个交点的直线
为
,
则
整理得
.........2分
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148334321532.png)
,解
①........4分
又因为直线
截椭圆
的“伴随圆”所得的弦长为
,
则有
化简得
② ....6分
联立①
②解得,
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832855908.png)
(2)线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832636285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148329331521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832636285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832746350.png)
解:(Ⅰ)由题意得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833026556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833058453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833073417.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833104354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833136658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832839577.png)
(Ⅱ)设过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833198613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833276284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833323716.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148334011201.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148334161459.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148334321532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833448169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833494775.png)
又因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832636285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832246313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832746350.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148336661306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833806879.png)
联立①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833448169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214833853716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214832855908.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目