题目内容
如图,在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积.
3πa2
解析
如图,在直角梯形中,°,,平面,,,设的中点为,.(1) 求证:平面;(2) 求四棱锥的体积.
已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.
如图,在三棱柱中,侧棱底面, 为的中点,.(1)求证:平面;(2)若,求三棱锥的体积.
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC,,(1)证明:平面ACD平面ADE;(2)记,表示三棱锥A-CBE的体积,求函数的解析式及最大值
如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.(1)求证:PH⊥平面ABC;(2)若a+b=2,求四面体PABC体积的最大值.
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1, 点E在SD上,且(1)证明:平面;(2)求三棱锥的体积
如图,是圆柱体的一条母线,过底面圆的圆心,是圆上不与点、重合的任意一点,已知棱,,.(1)求证:;(2)将四面体绕母线转动一周,求的三边在旋转过程中所围成的几何体的体积.
如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.