题目内容

如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.

(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体PABC体积的最大值.

(1)见解析   (2)

解析(1)证明:∵DF⊥AC,
∴折起后AC⊥PE,AC⊥EF,
∴AC⊥平面PEF,
又PH?平面PEF,
∴AC⊥PH,
又PH⊥EF,EF∩AC=E,
∴PH⊥平面ABC.
(2)解:∵PE⊥AC,EF⊥AC,
∴∠PEF就是二面角PACB的平面角,
∴∠PEF=60°,
∴Rt△PHE中,PH=PE,
折起前,Rt△ADC中,
DE==,
S△ABC=ab,
折起后,PE=DE,
∴PH=PE=·,
=PH·S△ABC
=···ab
=·,
∵a+b=2,a>0,b>0,
==,
当且仅当a=b=1时,两个等号同时成立,
因此()max=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网