题目内容
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC,,
(1)证明:平面ACD平面ADE;
(2)记,表示三棱锥A-CBE的体积,求函数的解析式及最大值
(1)详见解析;(2)时,体积有最大值
解析试题分析:(1)因为四边形DCBE为平行四边形,所以 而易证平面,从而平面,由面面垂直的判定定理可得,平面平面 (2)三棱锥A-CBE的体积即为三棱锥E-ABC的体积,所以,当OCAB时取得最大值,此时
试题解析:(1)证明:因为四边形DCBE为平行四边形,所以
平面,平面,
因为AB是圆O的直径,且
平面 又,平面
又平面,所以平面平面 4分
(2)∵ DC平面ABC ∴平面ABC
在Rt△ABE中,,
在Rt△ABC中 ()
∴,
() (8分)
备注:未指明定义域扣1分
∵ 当且仅当,
即时,体积有最大值为 (12分)
考点:1、空间直线与平面的位置关系;2、三棱锥的体积;3、最值问题
练习册系列答案
相关题目