题目内容
判断函数f(x)=ex+
在区间(0,+∞)上的单调性.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040712906375.png)
f(x)在(0,+∞)上为增函数
(解法1)设0<x1<x2,则f(x1)-f(x2)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240407129221064.png)
=
=
.
∵0<x1<x2,∴x1-x2<0,x1+x2>0,
∴ex1-x2<1,ex1+x2>1,ex1>0,
∴f(x1)<f(x2).
∴f(x)在(0,+∞)上是增函数.
(解法2)对f(x)=ex+
求导,得f′(x)=ex-
=
(e2x-1),
当x>0时,ex>0,e2x>1,∴f′(x)>0,
∴f(x)在(0,+∞)上为增函数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240407129221064.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240407129371617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040712953915.png)
∵0<x1<x2,∴x1-x2<0,x1+x2>0,
∴ex1-x2<1,ex1+x2>1,ex1>0,
∴f(x1)<f(x2).
∴f(x)在(0,+∞)上是增函数.
(解法2)对f(x)=ex+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040712906375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040712906375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040712906375.png)
当x>0时,ex>0,e2x>1,∴f′(x)>0,
∴f(x)在(0,+∞)上为增函数.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目