题目内容
17.设数列{an}的前n项和为Sn,且an+Sn=pn2+qn+r,其中p、q、r是常数,n∈N*.(1)若数列{an}是等差数列且p=5,q=13,r=-2,求数列{an}的通项公式;
(2)①求证:当3p-q+r=0时,数列{an}为等差数列;
②若r=0,且{an}是首项为1的等差数列,设Tn=$\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$,Qn=$\sum_{i=1}^{n}$(Ti-1),试问:是否存在非零函数f(x),使得f(n)Q1Q2…Qn=1,对一切正整数n都成立,若存在,求出f(x)的解析式,否则,请说明理由.
分析 (1)通过设数列{an}的公差为d,利用an+Sn=pn2+qn+r计算即得结论;
(2)①通过an+Sn=pn2+qn+r、an+1+Sn+1=p(n+1)2+q(n+1)+r可得2an+1-an=p(2n+1)+q、2an+2-an+1=p(2n+3)+q,进而有2(an+2-an+1)-(an+1-an)=2p,记bn=an+1-an,则2(bn+1-2p)=bn-2p,取n=1、2,整理即得结论;②通过①可知an=n,化简可得Tn=1+$\frac{1}{i}$-$\frac{1}{i+1}$,从而Qn=$\frac{n}{n+1}$,利用(n+1)Q1Q2…Qn=1即可.
解答 (1)解:设数列{an}的公差为d,
∵an+Sn=pn2+qn+r,
∴a1+(n-1)d+na1+$\frac{n(n-1)}{2}d$=5n2+13n-2,
即:$\frac{d}{2}$n2+$({a}_{1}+\frac{d}{2})$n+(a1-d)=5n2+13n-2,
∴$\left\{\begin{array}{l}{\frac{d}{2}=5}\\{{a}_{1}-d=-2}\\{{a}_{1}+\frac{d}{2}=13}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=8}\\{d=10}\end{array}\right.$,
∴数列{an}的通项:an=10n-2;
(2)①证明:已知3p-q+r=0时,
∵an+Sn=pn2+qn+r,∴an+1+Sn+1=p(n+1)2+q(n+1)+r,
两者相减得:2an+1-an=p(2n+1)+q,
∴2an+2-an+1=p(2n+3)+q,
两者相减得:2an+2-3an+1+an=2p,
即有2(an+2-an+1)-(an+1-an)=2p,
记bn=an+1-an,则2bn+1-bn=2p,
∴2(bn+1-2p)=bn-2p,
令n=1,代入an+Sn=pn2+qn+r得:a1=2p+r,
令n=2,代入an+Sn=pn2+qn+r得:a2=4p+r,
∴b1=a2-a1=2p,即b1-2p=0,
∴bn-2p=0,即bn=2p为常数,
即an+1-an=2p为常数,
∴数列{an}是以2p+r为首项、2p为公差的等差数列;
②结论:存在非零函数f(x)=x+1,使得f(n)Q1Q2…Qn=1,对一切正整数n都成立.
理由如下:
∵数列{an}是首项为1的等差数列,由①知公差d=1,∴an=n,
∴Tn=$\sqrt{1+\frac{1}{{{a}_{i}}^{2}}+\frac{1}{{{a}_{i+1}}^{2}}}$
=$\sqrt{1+\frac{1}{{i}^{2}}+\frac{1}{(i+1)^{2}}}$
=$\sqrt{\frac{{i}^{2}(i+1)^{2}+(i+1)^{2}+{i}^{2}}{{i}^{2}(i+1)^{2}}}$
=$\frac{i(i+1)+1}{i(i+1)}$
=1+$\frac{1}{i(i+1)}$
=1+$\frac{1}{i}$-$\frac{1}{i+1}$,
∴Qn=$\sum_{i=1}^{n}$(Ti-1)
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=$\frac{n}{n+1}$,
∴Q1Q2…Qn=$\frac{1}{2}$•$\frac{2}{3}$•…•$\frac{n}{n+1}$=$\frac{1}{n+1}$,
即(n+1)Q1Q2…Qn=1,
∴f(x)=x+1.
点评 本题是一道关于数列的综合题,考查求通项,考查运算求解能力,注意解题方法的积累,属于难题.
A. | 16$\sqrt{2}$+16π | B. | 16$\sqrt{2}$+8π | C. | 8$\sqrt{2}$+8π | D. | 8$\sqrt{2}$+16π |