ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖª£ºÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬¶Ì°ëÖ᳤Ϊ$\sqrt{3}$£»Ð±ÂÊΪ$\frac{b}{a}$µÄ¶¯Ö±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÓëxÖᣬyÖáÏཻÓÚP£¬QÁ½µã£¨ÈçͼËùʾ£©£®£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÊÔ̽¾¿$\frac{|AP|}{|BQ|}$ÊÇ·ñΪ¶¨Öµ£¿ÈôÊǶ¨Öµ£¬ÊÔÇó³ö¸Ã¶¨Öµ£»Èô²»ÊǶ¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒ⣬µÃb=$\sqrt{3}$£¬ËùÒÔa2-c2=3£¬ÓÖ$e=\frac{c}{a}=\frac{1}{2}$£¬µÃ£¬a=2cÇóµÃÍÖÔ²·½³Ì£®
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=$\frac{\sqrt{3}}{2}x+n$£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{2}x+n}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÀûÓÃÖе㹫ʽÇóµÄËùÐèÖ¤Ã÷½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬µÃb=$\sqrt{3}$£¬ËùÒÔa2-c2=3£¬¢Ù£¬
ÓÖ$e=\frac{c}{a}=\frac{1}{2}$£¬µÃ£¬a=2c£®¢Ú
ÓÉ¢Ù¢ÚµÃa=2£®ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
£¨¢ò£©¢Ùµ±Ö±Ïßl¹ýÔµãʱ£¬ÓÉÍÖÔ²µÃ¶Ô³ÆÐÔ£¬¿ÉÖª£¬|AP|=|BQ|£¬¼´$\frac{|AP|}{|BQ|}=1$
ÒÔϸø³ö¾ßÌåÖ¤Ã÷¹ý³Ì£º
ÓÉ£¨¢ñ£©µÃ$\frac{b}{a}=\frac{\sqrt{3}}{2}$£¬¹ÊÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=$\frac{\sqrt{3}}{2}x+n$
Áîy=0£¬µÃx=$-\frac{2\sqrt{3}}{3}n$£¬¹ÊP£¨$-\frac{2\sqrt{3}}{3}n£¬0$£©£»
Áîx=0£¬µÃy=n£¬¹ÊQ£¨0£¬n£©
¹ÊPQÖеãºá×ø±êΪ$-\frac{\sqrt{3}}{3}n$
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{2}x+n}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$
ÏûÈ¥y£¬µÃ3x2+2$\sqrt{3}$nx+2n2-6=0
Áî¡÷=12n2-12£¨2n2-6£©£¾0£¬µÃ$-\sqrt{6}£¼n£¼\sqrt{6}$
µ±$-\sqrt{6}£¼n£¼\sqrt{6}$ʱ£¬Ö±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬B
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
Ôò${x}_{1}+{x}_{2}=-\frac{2\sqrt{3}}{3}n$£¬$\frac{{x}_{1}+{x}_{2}}{2}=-\frac{\sqrt{3}}{3}n$
ËùÒÔÏ߶ÎABµÄÖеãºá×ø±êΪ$-\frac{\sqrt{3}}{3}n$
ÓÖÒòΪÏ߶ÎPQµÄÖеãµÄºá×ø±êΪ$-\frac{\sqrt{3}}{3}n$
ËùÒÔ$\frac{|AP|}{|BQ|}=1$
×ۺϢ٢ڿÉÖª£¬$\frac{|AP|}{|BQ|}$Ϊ¶¨Öµ£¬ÇÒ¶¨ÖµÎª1
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ÊôÄÑÌ⣮Ôڸ߿¼Öг£×÷ΪѹÖáÌâÄ¿£®
A£® | 2 | B£® | 3 | C£® | $\sqrt{2}$ | D£® | $\sqrt{3}$ |