题目内容

3.设f(x)=6cos2x-$\sqrt{3}$sin2x
(1)求f(x)的最大值及最小正周期
(2)若α满足f($\frac{α}{2}$)=3-$\frac{2\sqrt{3}}{3}$,求sin(2$α-\frac{π}{6}$)的值.

分析 (1)利用二倍角公式和两角和公式对函数解析式化简,利用三角函数图象与性质求得函数的最大值和最小正周期.
(2)根据已知等式求得cos(α+$\frac{π}{6}$)的值,利用倍角公式求得cos(2α+$\frac{π}{3}$)的值,最后通过诱导公式求得答案.

解答 解:(1)f(x)=3cos2x-$\sqrt{3}$sin2x+3=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3,
∴函数的最大值为2$\sqrt{3}$+3,
最小正周期T=$\frac{2π}{2}$=π.
(2)f($\frac{α}{2}$)=2$\sqrt{3}$cos(α+$\frac{π}{6}$)+3=3-$\frac{2\sqrt{3}}{3}$,
∴cos(α+$\frac{π}{6}$)=-$\frac{1}{3}$,
∴cos(2α+$\frac{π}{3}$)=2cos2(α+$\frac{π}{6}$)-1=-$\frac{7}{9}$,
sin(2$α-\frac{π}{6}$)=-cos($\frac{π}{2}$+2α-$\frac{π}{6}$)=-cos(2α+$\frac{π}{3}$)=$\frac{7}{9}$

点评 本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.注重了对学生基础公式的灵活运用的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网