题目内容
如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为
,求直线PA与平面EAC所成角的正弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240350455814511.jpg)
(1)求证:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045596466.png)
(1)见解析(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045612447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045612447.png)
(1)∵PC⊥平面ABCD,AC?平面ABCD,∴AC⊥PC.∵AB=2,AD=CD=1,∴AC=BC=
.
∴AC2+BC2=AB2.∴AC⊥BC.
又BC∩PC=C,∴AC⊥平面PBC.
∵AC?平面EAC,
∴平面EAC⊥平面PBC.
(2)如图,以点C为原点,
,
,
分别为x轴、y轴、z轴正方向,建立空间直角坐标系,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240350457375064.jpg)
则C(0,0,0),A(1,1,0),B(1,-1,0),设P(0,0,a)(a>0),
则E
,
=(1,1,0),
=(0,0,a),
=
.取m=(1,-1,0),则m·
=m·
=0,m为面PAC的法向量.设n=(x,y,z)为面EAC的法向量,则n·
=n·
=0,即
取x=a,y=-a,z=-2,则n=(a,-a,-2),依题意,|cos〈m,n〉|=
=
=
,则a=2.于是n=(2,-2,-2),
=(1,1,-2).设直线PA与平面EAC所成角为θ,则sin θ=|cos〈
,n〉|=
=
,即直线PA与平面EAC所成角的正弦值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045612447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045612344.png)
∴AC2+BC2=AB2.∴AC⊥BC.
又BC∩PC=C,∴AC⊥平面PBC.
∵AC?平面EAC,
∴平面EAC⊥平面PBC.
(2)如图,以点C为原点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045627396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045643421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045659401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240350457375064.jpg)
则C(0,0,0),A(1,1,0),B(1,-1,0),设P(0,0,a)(a>0),
则E
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045752816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045768399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045659401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045815421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045752816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045768399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045659401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045768399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045815421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045877904.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045893542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045908574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045596466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045939379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045939379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045971679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045612447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035045612447.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目