题目内容

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.
(1)见解析(2)
(1)∵PC⊥平面ABCDAC?平面ABCD,∴ACPC.∵AB=2,ADCD=1,∴ACBC.
AC2BC2AB2.∴ACBC.
BCPCC,∴AC⊥平面PBC.
AC?平面EAC
∴平面EAC⊥平面PBC.
(2)如图,以点C为原点,分别为x轴、y轴、z轴正方向,建立空间直角坐标系,

C(0,0,0),A(1,1,0),B(1,-1,0),设P(0,0,a)(a>0),
E=(1,1,0),=(0,0,a),.取m=(1,-1,0),则m·m·=0,m为面PAC的法向量.设n=(xyz)为面EAC的法向量,则n·n·=0,即xay=-az=-2,则n=(a,-a,-2),依题意,|cos〈mn〉|=,则a=2.于是n=(2,-2,-2),=(1,1,-2).设直线PA与平面EAC所成角为θ,则sin θ=|cos〈n〉|=,即直线PA与平面EAC所成角的正弦值为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网