题目内容

【题目】已知函数 ,其中a∈R.
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)已知a>0,函数f(x)的反函数为f1(x),若函数y=f(x)+f1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.

【答案】
(1)解:∵

∴f(﹣x)=﹣ax+log2(2x+1)

=﹣ax+log2(2x+1)﹣log22x

=﹣ax+log2(2x+1)﹣x,

∴f(﹣x)=f(x),

即﹣ax﹣x=ax,

故a= ;此时函数为偶函数,

若a≠﹣ ,函数为非奇非偶函数


(2)解:∵a>0,

单调递增,

又∵函数f(x)的反函数为f1(x),

∴f1(x)单调递增;

∴f(1)+f1(1)=1+log23,

即a+log23+f1(1)=1+log23,

故f1(1)=1﹣a,

即a(1﹣a)+log2(2a1+1)=1,

解得,a=1;

故f(2)=2+log25


【解析】(1)由 得f(﹣x)=﹣ax+log2(2x+1)﹣x,从而可得当a= 时函数为偶函数; (2)可判断 与f1(x)都是增函数,从而可得f(1)+f1(1)=1+log23,从而解出a.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网