题目内容

【题目】已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

【答案】解:(Ⅰ)因为 所以
因此a=16
(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)
当x∈(﹣1,1)∪(3,+∞)时,f′(x)>0
当x∈(1,3)时,f′(x)<0
所以f(x)的单调增区间是(﹣1,1),(3,+∞)f(x)的单调减区间是(1,3)
(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,
在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0
所以f(x)的极大值为f(1)=16ln2﹣9,极小值为f(3)=32ln2﹣21
因此f(16)>162﹣10×16>16ln2﹣9=f(1)f(e2﹣1)<﹣32+11=﹣21<f(3)
所以在f(x)的三个单调区间(﹣1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1)
因此,b的取值范围为(32ln2﹣21,16ln2﹣9)
【解析】(Ⅰ)先求导 ,再由x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点即 求解.(Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)再由f′(x)>0和f′(x)<0求得单调区间.
(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2﹣21,16ln2﹣9).

练习册系列答案
相关题目

【题目】已知函数f(x)满足f(xy)=f(xf(y),且f(1)=.

(1)nN,求f(n)的表达式;

(2)annf(n),nN,求证:a1a2+…+an<2.

【答案】(1)(2)见解析

【解析】

(1)利用f(x+y)=f(x)f(y)(x,yR)通过令x=n,y=1,说明{f(n)}是以f(1)=为首项,公比为的等比数列求出;(2)利用(1)求出an=nf(n)的表达式,利用错位相减法求出数列的前n项和,即可说明不等式成立.

(1)解:f(n)=f[(n-1)+1]

f(n-1)·f(1)=f(n-1).

∴当n≥2时,.

f(1)=

∴数列{f(n)}是首项为,公比为的等比数列,

f(n)=f(1)·()n1=()n.

(2)证明(1)可知

ann·()nn·

Sna1a2+…+an

Sn+2×+3×+…+(n-1)·n·

Sn+2×+…+(n-2)·+(n-1)·n·.

②得

Sn+…+n·

=1-

Sn=2-<2.

a1a2+…+an<2.

【点睛】

本题考查数列与函数的关系,数列通项公式的求法和的求法,考查不等式的证明,裂项法与错位相减法的应用,数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.

型】解答
束】
22

【题目】设数列{an}的前n项和为Sn.已知a1a (a≠3),an1Sn+3nnN.

(1)bnSn-3n,求数列{bn}的通项公式;

(2)an1annN,求a的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网