题目内容
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.
【答案】(1)C1:y2=1,C2 :x2+(y﹣2)2=1;(2)[0,1]
【解析】
(Ⅰ)消去参数φ可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,2),可得C2的直角坐标方程;(Ⅱ)设M(3cosφ,sinφ),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案.
(1)消去参数φ可得C1 的普通方程为y2=1,
∵曲线C2 是圆心为(2,),半径为1 的圆,曲线C2 的圆心的直角坐标为(0,2),
∴C2 的直角坐标方程为x2+(y﹣2)2=1;
(2)设M(3cosφ,sinφ),则|MC2|
,
∵﹣1≤sinφ≤1,∴1≤|MC2|,
由题意结合图象可得|MN|的最小值为1﹣1=0,最大值为1,
∴|MN|的取值范围为[0,1].
练习册系列答案
相关题目
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)