题目内容
【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
【答案】②③
【解析】由题意,是以AC为轴,BC为底面半径的圆锥的母线,由,又AC⊥圆锥底面,所以在底面内可以过点B,作,交底面圆于点D,如图所示,连结DE,则DE⊥BD,,连结AD,等腰中,,当直线AB与a成60°角时,,故,又在中,,过点B作BF∥DE,交圆C于点F,连结AF,由圆的对称性可知,为等边三角形,,即AB与b成60°角,②正确,①错误.
由图可知③正确;很明显,可以满足平面ABC⊥直线a,则直线与所成角的最大值为90°,④错误.
故正确的是②③.
练习册系列答案
相关题目