题目内容
【题目】已知函数 .
(1)若曲线在处切线的斜率为,求此切线方程;
(2)若有两个极值点,求的取值范围,并证明:.
【答案】(1);(2),证明见解析.
【解析】分析:(1)由函数的解析式可得,利用可得, 则切点为,切线方程为.
(2)结合(1)中导函数的解析令,得.构造函数,令,则,利用导函数研究函数的单调性可知在递增,在递减,所以. 结合题意可得的取值范围是. 由极值点的性质可得不妨设,则,,结合的单调性可得,据此有,即.
详解:(1)∵,∴,解得,
∴,故切点为,
所以曲线在处的切线方程为.
(2),令,得.
令,则,
且当时,;当时,;时,.
令,得,
且当时,;当时,.
故在递增,在递减,所以.
所以当时,有一个极值点;
时,有两个极值点;
当时,没有极值点.
综上,的取值范围是.
因为是的两个极值点,所以即…①
不妨设,则,,
因为在递减,且,所以,即…②.
由①可得,即,
由①,②得,所以.
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
图1 图2
(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;
②参考数据:.