题目内容
【题目】对于函数y=ex,曲线y=ex在与坐标轴交点处的切线方程为y=x+1,由于曲线 y=ex在切线y=x+1的上方,故有不等式ex≥x+1.类比上述推理:对于函数y=lnx(x>0),有不等式( )
A. lnx≥x+1(x>0)B. lnx≤1﹣x(x>0)
C. lnx≥x﹣1(x>0)D. lnx≤x﹣1(x>0)
【答案】D
【解析】
求出导数和函数图象与轴的交点坐标,再求出在交点处的切线斜率,代入点斜式方程求出切线方程,再与函数的图象位置比较,得到不等式.
由题意得,y′=(lnx)′,且y=lnx图象与x轴的交点是(1,0),
则在(1,0)处的切线的斜率是1,∴在(1,0)处的切线的方程是y=x﹣1,
∵切线在y=lnx图象上方(x>0),∴x﹣1≥lnx(x>0),
故选:D.
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
图1 图2
(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;
②参考数据:.