题目内容
【题目】如果某地的财政收入与支出满足线性回归方程(单位:亿元),其中,如果今年该地区财政收入10亿元,则年支出预计不会超过( )
A. 10.5亿 B. 10亿 C. 9.5亿 D. 9亿
【答案】A
【解析】分析:已知线性回归方程为y=bx+a+e,将b=0.8、a=2代入可将其化为y=0.8x+2+e;
将x=10代入上步得到的方程中,结合e的取值范围即可得到y的取值范围,进而确定y的最大值
详解:因为线性回归方程为y=bx+a+e,b=0.8,a=2,
所以y=0.8x+2+e.
当x=10时,y=0.8x+2+e=10+e.
因为|e|≤0.5,
所以-0.5≤e≤0.5,
于是有9.5≤y≤10.5,
从而可得今年支出预计不超出10.5亿元.
故选A.
点晴:本题是一道关于线性回归方程的题目,解题的关键是理清变量之间的数量关系;
【题目】某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级名学生某次考试成绩(百分制)如下表所示:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
数学成绩 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成绩 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若数学成绩分以上为优秀,物理成绩分(含分)以上为优秀.
(Ⅰ)根据上表完成下面的列联表:
数学成绩优秀 | 数学成绩不优秀 | 合计 | |
物理成绩优秀 | |||
物理成绩不优秀 | 12 | ||
合计 | 20 |
(Ⅱ)根据题(Ⅰ)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这人中抽取人来了解有关情况:将一个标有数字,,,,,的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到号的概率.
参考数据公式:①独立性检验临界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
②独立性检验随机变量值的计算公式:.
【题目】为了增强消防安全意识,某中学做了一次消防知识讲座,从男生中随机抽取了50人,从女生中随机抽取了70人参加消防知识测试,统计数据得到如下的列联表:
优秀 | 非优秀 | 总计 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
总计 | 45 | 75 | 120 |
(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关;
(2)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率。
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】为推行“新课堂”教学法, 某化学老师分别用传统教学和“新课堂”两种不同的教学方式, 在甲、乙两个平行班进行教学实验, 为了解教学效果, 期中考试后, 分别从两个班级中各随机抽取20名学生的成绩进行统计, 作出的茎叶图如下图, 记成绩不低于70分者为“成绩优良”.
(1) 分别计算甲、乙两班20个样本中, 化学成绩前十的平均分, 并据此判断哪种教学方式的教学效果更佳;
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总 计 |
(2)由以上统计数据填写下面2×2列联表,是否有95%的把握认为“成绩优良与教学方式关”?
0.05 | 0.010 | |
3.841 | 6.635 |