题目内容
【题目】为了增强消防安全意识,某中学做了一次消防知识讲座,从男生中随机抽取了50人,从女生中随机抽取了70人参加消防知识测试,统计数据得到如下的列联表:
优秀 | 非优秀 | 总计 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
总计 | 45 | 75 | 120 |
(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关;
(2)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率。
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)见解析;(2)
【解析】分析:(1)根据公式计算K2,对照数表即可得出概率结论;
(2)用分层抽样法求出抽取的男、女生数,利用列举法求出基本事件数,计算对应的概率值.
详解:(1)因为K2=≈2.057,且2.057<2.706,
所以没有90%的把握认为消防知识的测试成绩优秀与否与性别有关.
(2)用分层抽样的方法抽取时,抽取比例是=,则抽取女生30×=4(人),抽取男生15×=2(人),记“到校外宣传的同学中至少有1名是男生”为事件M,则P(M)==.
点晴:概率统计是高考必考题之一,也是必拿分数的题目,大家需要区分二项分布,超几何分布等的区别,注意几何概型,古典概型概率求法。
练习册系列答案
相关题目