题目内容
【题目】设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
【答案】
(1)
解:因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+ ,(x>0),
令x=1,得f(1)=16a,f′(1)=6﹣8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),
由切线与y轴相交于点(0,6).
∴6﹣16a=8a﹣6,
∴a= .
(2)
解:由(1)得f(x)= (x﹣5)2+6lnx,(x>0),
f′(x)=(x﹣5)+ = ,令f′(x)=0,得x=2或x=3,
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,
故f(x)在x=2时取得极大值f(2)= +6ln2,在x=3时取得极小值f(3)=2+6ln3
【解析】(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 | ||||||
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作成如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的终点值作为代表);
(2)根据已知条件完成下面的列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
附:参考公式,其中.
临界值表:
() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】某单位招聘员工,有名应聘者参加笔试,随机抽查了其中名应聘者笔试试卷,统计他们的成绩如下表:
分数段 | |||||||
人数 | 1 | 3 | 6 | 6 | 2 | 1 | 1 |
若按笔试成绩择优录取名参加面试,由此可预测参加面试的分数线为( )
A. 分 B. 分 C. 分 D. 分