题目内容
已知数列
的前
项和
和通项
满足
(
,
是大于0的常数,且
),数列
是公比不为
的等比数列,
.
(1)求数列
的通项公式;
(2)设
,是否存在实数
,使数列
是等比数列?若存在,求出所有可能的实数
的值,若不存在说明理由;
(3)数列
是否能为等比数列?若能,请给出一个符合的条件的
和
的组合,若不能,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712332456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712347297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712363388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712379348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712410835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712425519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712441310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712457374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712472471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712441310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712503567.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712332456.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712519646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712535323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712550632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712535323.png)
(3)数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712581431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712441310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712597365.png)
(1)
,(2)λ= 2或λ= 3,(3)不可能为等比数列.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712613483.png)
试题分析:(1)求一般数列通项,常利用和项与通项关系,即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712628435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240507126591279.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712675530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712706867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712722435.png)
结合q>0知,数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712332456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712441310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712753625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712769475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712800565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712535323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712550632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712847336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712581431.png)
解:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712628435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240507129091333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712675530.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712706867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712722435.png)
结合q>0知,数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712332456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712441310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712753625.png)
(2)结合(1)知,当q=2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712769475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712800565.png)
假设存在实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712535323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712550632.png)
(cn+1+λcn)2=(cn+2+λcn+1)(cn+λcn 1),将cn=2n+3n代入上式,得:
[2n+1+3n+1+λ(2n+3n)]2=[2n+2+3n+2+λ(2n+1+3n+1)]·[2n+3n+λ(2n 1+3n 1)],
即 [(2+λ)2n+(3+λ)3n]2=[(2+λ)2n+1+(3+λ)3n+1][(2+λ)2n 1+(3+λ)3n 1],
整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712847336.png)
故存在实数实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712535323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712550632.png)
(3)数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050712581431.png)
理由如下:
设等比数列{bn}的公比为p,则由题设知p≠q,则cn=qn+b1pn 1
为要证{cn}不是等比数列只需证c22≠c1·c3.
事实上,
c22=(q2+b1p)2=q4+2q2b1p+b12p2, ①
c1·c3=(q+b1)(q3+b1p2)=q4+b12p2+b1q(p2+q2), ②
②-①得
c1c3 c22=b1q(p2+q2 2pq)
由于p≠q时,p2+q2>2pq,又q及等比数列的首项b1均不为零,
所以 c1c3 c22≠0,即 c22≠c1·c3. 故{cn}不是等比数列. 16分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目