题目内容
【题目】已知函数f(x)=x3+bx2+cx﹣1当x=﹣2时有极值,且在x=﹣1处的切线的斜率为﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[﹣1,2]上的最大值与最小值.
【答案】
(1)解f'(x)=3x2+2bx+c
依题意得 解得:
∴函数f(x)的解析式为f(x)=x3+3x2﹣1
(2)解由(1)知f'(x)=3x2+6x.令f'(x)=0,
解得x1=﹣2,x2=0
列表:
x | ﹣1 | (﹣1,0) | 0 | (0,2) | 2 |
f'(x) | ﹣ | + | |||
f(x) | 1 | ﹣1 | 19 |
从上表可知,f(x)在区间[﹣1,2]上的最大值是19,最小值是﹣1
【解析】(1)根据函数f(x)在x=﹣2处有极值,且在x=﹣1处切线斜率为﹣3,列出方程组;(2)利用导数求出函数的单调区间,即可求出函数的最大值与最小值;
【考点精析】通过灵活运用函数的最大(小)值与导数,掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.
练习册系列答案
相关题目