题目内容

已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆的方程;
(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.
(1)依题意得|F1F2|=2,
又2|F1F2|=|PF1|+|PF2|,
∴|PF1|+|PF2|=4=2a,
∴a=2,
∵c=1,
∴b2=3.
∴所求椭圆的方程为
x2
4
+
y2
3
=1.----------(3分)
(2)设P点坐标为(x,y),
∵∠F2F1P=120°,
∴PF1所在直线的方程为y=(x+1)•tan120°,
即y=-
3
(x+1).----------(4分)
解方程组
y=-
3
x+1
x2
4
+
y2
3
=1

并注意到x<0,y>0,可得
x=-
8
5
y=
3
3
5
---------(6分)
∴S△PF1F2=
1
2
|F1F2|•
3
3
5
=
3
3
5
.----------(8分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网