题目内容
【题目】已知函数f(x)=2|x+a|+|x﹣ |(a≠0).
(1)当a=1时,解不等式f(x)<4;
(2)求函数g(x)=f(x)+f(﹣x)的最小值.
【答案】
(1)解:∵a=1,∴原不等式为2|x+1|+|x﹣1|<4,
∴ ,或 ,或
解得 或﹣1≤x<1或无解,
∴原不等式的解集为
(2)解:g(x)=f(x)+f(﹣x)=
,
当且仅当 ,即 ,且(x+a)(x﹣a)<0,(x+ )(x﹣ )<0时取等号,
∴g(x)的最小值为
【解析】(1)对x的范围进行讨论,去绝对值符号解出;(2)利用绝对值不等式的性质和基本不等式得出最小值.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
【题目】已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:
x | 3 | 4 | 5 | 6 |
y | 25 | 30 | 40 | 45 |
由上表可得线性回归方程 = x+ ,据此模型预报广告费用为8万元时的销售额是( )
附: = ; = ﹣ x.
A.59.5
B.52.5
C.56
D.63.5
【题目】网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.
(1)根据已知条件完成下面的2×2列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?
网购迷 | 非网购迷 | 合计 | |
年龄不超过40岁 | |||
年龄超过40岁 | |||
合计 |
(2)若从网购迷中任意选取2名,求其中年龄丑啊过40岁的市民人数ξ的分布列与期望. 附: ;
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.01 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 |