题目内容
【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
【答案】解:(Ⅰ)连结BC1,交B1C于点O,连结AO,
∵侧面BB1C1C为菱形,
∴BC1⊥B1C,且O为BC1和B1C的中点,
又∵AB⊥B1C,∴B1C⊥平面ABO,
∵AO平面ABO,∴B1C⊥AO,
又B10=CO,∴AC=AB1,
(Ⅱ)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,
又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,
∴OA,OB,OB1两两垂直,
以O为坐标原点, 的方向为x轴的正方向,| |为单位长度,
的方向为y轴的正方向, 的方向为z轴的正方向建立空间直角坐标系,
∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,
∴A(0,0, ),B(1,0,0,),B1(0, ,0),C(0, ,0)
∴ =(0, , ), = =(1,0, ), = =(﹣1, ,0),
设向量 =(x,y,z)是平面AA1B1的法向量,
则 ,可取 =(1, , ),
同理可得平面A1B1C1的一个法向量 =(1,﹣ , ),
∴cos< , >= = ,
∴二面角A﹣A1B1﹣C1的余弦值为
【解析】(Ⅰ)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(Ⅱ)以O为坐标原点, 的方向为x轴的正方向,| |为单位长度, 的方向为y轴的正方向, 的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.