题目内容

17.若实数x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ y≥-1\\ x+y≤1\end{array}\right.$,则z=2x-y的最大值为(  )
A.-1B.$\frac{1}{2}$C.5D.7

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点A时,直线y=2x-z的截距最小,
此时z最大.
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即A(2,-1)
代入目标函数z=2x-y,
得z=4-(-1)=5.
即z=2x-y的最大值为5,
故选:C.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网