ÌâÄ¿ÄÚÈÝ
5£®ÎªÁËÁ˽â³ÇÊÐÈ˾ùGDPÓëÈ˾ùÈÕ²úÉú»îÀ¬»øÁ¿Ö®¼äµÄÏà¹Ø¹Øϵ£¬¹ú¼Òͳ¼Æ¾ÖÓëÎÀÉú¹ÜÀí¾ÖËæ»ú³é²éÁË6¸ö³ÇÊУ¬¾ßÌåÊý¾ÝÈç±í³ÇÊÐ | Ìì½ò | ÖØÇì | ¹ãÖÝ | ÉîÛÚ | Î人 | Î÷°² |
È˾ùGDP£¨ÍòÃÀÔª£©x | 1.64 | 0.69 | 1.93 | 2.22 | 1.43 | 0.92 |
È˾ùÈÕ²úÉú»îÀ¬»øÁ¿£¨Ç§¿Ë£©y | 0.64 | 0.51 | 1.05 | 1.15 | 0.99 | 0.76 |
£¨2£©Çó³öxÓëyÖ®¼äµÄÏßÐԻع鷽³Ì£»
£¨ÌṩÏÂÁвο¼Êý¾Ý£º$\sum_{i=1}^6{x_i}=8.82$£¬$\sum_{i=1}^6{x_i}{y_i}=8.1$£¬$\sum_{i=1}^6{x_i}^2=14.7$£©
£¨3£©Èç¹ûij³ÇÊеÄÈ˾ùGDP´ïµ½ÁË3ÍòÃÀÔª£¬Ô¤²â¸Ã³ÇÊеÄÈ˾ùÈÕ²úÉú»îÀ¬»øÁ¿Îª¶àÉÙǧ¿Ë£¿
·ÖÎö £¨1£©Ö±½ÓÀûÓÃÒÑÖªÌõ¼þÇó½âƽ¾ùÖµ¼´¿É£®
£¨2£©ÀûÓÃÒÑÖªÌõ¼þÇó½â»Ø¹éÖ±Ïß·½³Ì¼´¿É£®
£¨3£©£¬Í¨¹ý»Ø¹éÖ±Ïß·½³ÌÇó½â¸Ã³ÇÊеÄÈ˾ùÈÕ²úÉú»îÀ¬»øÁ¿£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö14·Ö£©
£¨1£©½â£º6¸ö³ÇÊÐÈ˾ùÈÕ²úÉú»îÀ¬»øÁ¿µÄ¾ùֵΪ$\overline y=0.85$ǧ¿Ë¡£¨3·Ö£©
£¨2£©½â£º¸ù¾ÝÌṩµÄÊý¾ÝÓÐ $\overline x=1.47$£¬$\sum_{i=1}^6{{x_i}{y_i}}=8.1£¬\sum_{i=1}^6{x_i^2}=14.7$
Óɹ«Ê½$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{£¨\overline x£©}^2}}}}=\frac{8.10-6¡Á1.47¡Á0.85}{{14.71-6¡Á{{1.47}^2}}}=\frac{8.1-7.50}{14.71-12.96}=\frac{0.6}{1.75}=\frac{12}{35}¡Ö0.343$
ÓÖ0.85=0.343¡Á1.47+a⇒a=0.35£¬¡àÏßÐԻع鷽³ÌΪ$\hat y=0.343x+0.35$¡£¨11·Ö£©
£¨3£©½â£ºÈç¹ûx=3ʱ£¬$\hat y=0.343¡Á3+0.35=1.379$ǧ¿Ë£¬Ôò¸Ã³ÇÊеÄÈ˾ùÈÕ²úÀ¬»øÁ¿Îª1.379ǧ¿Ë¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²é»Ø¹éÖ±Ïß·½³ÌµÄÇó·¨ÓëÓ¦Ó㬻ù±¾ÖªÊ¶µÄ¿¼²é£®
A£® | $\frac{23}{3}$ | B£® | $\frac{22}{3}$ | C£® | $\frac{47}{6}$ | D£® | 7 |
A£® | -1 | B£® | $\frac{1}{2}$ | C£® | 5 | D£® | 7 |
A£® | Èç¹ûÖ±Ïßa¡Îb£¬ÄÇôaƽÐÐÓÚ¾¹ýbµÄÈκÎƽÃæ | |
B£® | Èç¹ûÖ±Ïßa£¬bºÍƽÃæ¦ÁÂú×ãa¡Î¦Á£¬b¡Î¦Á£¬ÄÇôa¡Îb | |
C£® | Èç¹ûƽÃæ¦Á¡ÍƽÃæ¦Â£¬ÄÇôƽÃæ¦ÁÄÚµÄËùÓÐÖ±Ï߶¼´¹Ö±ÓÚƽÃæ¦Â | |
D£® | Èç¹ûƽÃæ¦Á²»´¹Ö±ÓÚƽÃæ¦Â£¬ÄÇôƽÃæ¦ÁÄÚÒ»¶¨²»´æÔÚÖ±Ïß´¹Ö±ÓÚƽÃæ¦Â |