题目内容

6.已知f′(x)是奇函数f(x)的导函数,f(-1)=0,当x>0时,xf′(x)+f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

分析 根据题意构造函数g(x)=xf(x),由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出
g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性画出函数的大致图象,再转化f(x)>0,由图象求出不等式成立时x的取值范围.

解答 解:由题意设g(x)=xf(x),则g′(x)=xf′(x)+f(x),
∵当x>0时,有xf′(x)+f(x)>0,
∴则当x>0时,g′(x)>0,
∴函数g(x)=xf(x)在(0,+∞)上为增函数,
∵函数f(x)是奇函数,
∴g(-x)=(-x)f(-x)=(-x)[-f(x)]=xf(x)=g(x),
∴函数g(x)为定义域上的偶函数,
由f(-1)=0得,g(-1)=0,函数g(x)的图象大致如右图:
∵不等式f(x)>0?$\frac{g(x)}{x}$>0,∴$\left\{\begin{array}{l}{x>0}\\{g(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<0}\end{array}\right.$,
由函数的图象得,-1<x<0或x>1,
∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),
故选:B.

点评 本题考查利用导数判断函数的单调性,由函数的奇偶性、单调性解不等式,考查构造函数法,转化思想和数形结合思想,属于综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网