题目内容
4.已知圆的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.(θ为参数)$,那么该圆的普通方程是( )A. | ${(x-2)^2}+{(y-1)^2}=\sqrt{2}$ | B. | ${(x+2)^2}+{(y+1)^2}=\sqrt{2}$ | C. | (x-2)2+(y-1)2=2 | D. | (x+2)2+(y+1)2=2 |
分析 由圆的参数方程$\left\{\begin{array}{l}x=2+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.(θ为参数)$,结合sin2θ+cos2θ=1可转化.
解答 解:由圆的参数方程$\left\{\begin{array}{l}x=2+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.(θ为参数)$可得$\left\{\begin{array}{l}x-2=\sqrt{2}cosθ\\ y-1=\sqrt{2}sinθ\end{array}\right.$.
平方相加得2cos2θ+2sin2θ=(x-2)2+(y-1)2=2.
故选:C.
点评 本小题主要考查圆的参数方程与普通方程的相互转化,属于基础试题.
练习册系列答案
相关题目
14.若a>b>1,c<0,则( )
A. | ac>bc | B. | bc>c | C. | a|c|>b|c| | D. | $\frac{a}{c}$>$\frac{b}{c}$ |
12.在直角坐标系xOy中,以原点为极点,x轴的非负半轴为极轴,且取相同的单位长度建立极坐标系,若点P的极坐标为(2,$\frac{π}{3}$),则它的直角坐标为( )
A. | $(\sqrt{3},1)$ | B. | (1,$\sqrt{3}$) | C. | (-1,$\sqrt{3}$) | D. | (1,-$\sqrt{3}$) |
14.已知全集U={a,b,c,d},集合M={a,b},N={b,c},则∁U(M∪N)=( )
A. | {a,c,d} | B. | {a,b,c} | C. | {c} | D. | {d} |