题目内容
14.已知全集U={a,b,c,d},集合M={a,b},N={b,c},则∁U(M∪N)=( )A. | {a,c,d} | B. | {a,b,c} | C. | {c} | D. | {d} |
分析 根据集合的基本运算进行求解即可.
解答 解:∵M={a,b},N={b,c},
∴M∪N={a,b,c},
则∁U(M∪N)={d},
故选:D.
点评 本题主要考查集合的基本运算,比较基础.
练习册系列答案
相关题目
4.已知圆的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.(θ为参数)$,那么该圆的普通方程是( )
A. | ${(x-2)^2}+{(y-1)^2}=\sqrt{2}$ | B. | ${(x+2)^2}+{(y+1)^2}=\sqrt{2}$ | C. | (x-2)2+(y-1)2=2 | D. | (x+2)2+(y+1)2=2 |
2.设函数f(x)=ex-x+3,{an}是公差为1且各项均为正数的等差数列.若f(a1)+f(a2)+f(a3)=$\frac{{{e^5}-{e^2}}}{e-1}$.其中e是自然对数的底数,则$\frac{{f({a_1})+f({a_3})}}{{f({a_2})}}$的值为( )
A. | $\frac{{{e^2}+1}}{e}$ | B. | $\frac{{{e^2}+3}}{e+1}$ | C. | $\frac{{{e^2}+5}}{e+2}$ | D. | $\frac{{{e^2}+e+2}}{e+1}$ |
19.若(2x-1)2013=a0+a1x+a2x2+…+a2013x2013(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2013}}{{2}^{2013}{a}_{1}}$=( )
A. | -$\frac{1}{2013}$ | B. | $\frac{1}{2013}$ | C. | -$\frac{1}{4026}$ | D. | $\frac{1}{4026}$ |
6.已知命题p:对任意的x∈R,有2x<3x;命题q:存在x∈R,使x3=1-x2,则下列命题中为真命题的是( )
A. | 非p且q | B. | p且q | C. | p且非q | D. | 非p且非q |