题目内容
抛物线,直线过抛物线的焦点,交轴于点.
(1)求证:;
(2)过作抛物线的切线,切点为(异于原点),
(ⅰ)是否恒成等差数列,请说明理由;
(ⅱ)重心的轨迹是什么图形,请说明理由.
(1)求证:;
(2)过作抛物线的切线,切点为(异于原点),
(ⅰ)是否恒成等差数列,请说明理由;
(ⅱ)重心的轨迹是什么图形,请说明理由.
(1) 即证 (2) 能 抛物线
试题分析:(1)由于点F的坐标已知,所以可假设直线AB的方程(依题意可得直线AB的斜率存在).写出点P的坐标,联立直线方程与抛物线方程消去y,即可得到一个关于x的一元二次方程,写出韦达定理,再根据欲证转化为点的坐标关系.
(2)(ⅰ)根据提议分别写出,结合韦达定理验证是否成立.
(ⅱ)由三角形重心的坐标公式,结合韦达定理,消去参数k即可得到重心的轨迹.
(1)因为,所以假设直线AB为,,所以点.联立可得,,所以.因为, .所以.
(2)(ⅰ)设,的导数为.所以可得,即可得.即得.
..所以可得即是否恒成等差数列.
(ⅱ)因为重心的坐标为由题意可得.即,消去k可得.
练习册系列答案
相关题目