题目内容
10.设全集集U=R,集合M={x|-2≤x≤2},N={x|y=$\sqrt{1-x}$},那么M∩N=[-2,1],CUN=(1,+∞).分析 求出N中x的范围确定出N,找出M与N的交集,求出N的补集即可.
解答 解:由N中y=$\sqrt{1-x}$,得到1-x≥0,即x≤1,
∴N=(-∞,1],
∵M=[-2,2],全集U=R,
∴M∩N=[-2,1],∁UN=(1,+∞),
故答案为:[-2,1];(1,+∞)
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
15.等差数列{an}的前n项和记为Sn,三个不同的点A,B,C在直线l上,点O在直线l外,且满足$\overrightarrow{OA}$=a2$\overrightarrow{OB}$+(a7+a12)$\overrightarrow{OC}$,那么S13的值为( )
A. | $\frac{28}{3}$ | B. | $\frac{26}{3}$ | C. | $\frac{14}{3}$ | D. | $\frac{13}{3}$ |
20.不等式x2-4|x|+3>0的解为( )
A. | x<1或x>3 | B. | x<-3或x>-1 | ||
C. | x<-3或-1<x<1或x>3 | D. | 0≤x<1或x>3 |