题目内容
如图所示,有两条相交成60°角的直路XX′和YY′,交点是O,甲、乙分别在OX、OY上,起初甲离O点3 km,乙离O点1 km,后来两人同时用每小时4 km的速度,甲沿XX′方向,乙沿Y′Y的方向步行.
(1)起初,两人的距离是多少?
(2)用t表示t小时后两人的距离;
(3)什么时候两人的距离最短?
(1)起初,两人的距离是多少?
(2)用t表示t小时后两人的距离;
(3)什么时候两人的距离最短?
(1)甲、乙两人起初的距离是km(2)|PQ|=(3)在第15分钟末,两人的距离最短
(1)设甲、乙两人起初的位置是A、B,则由余弦定理:
|AB|2=|OA|2+|OB|2-2|OA|·|OB|·cos60°
=32+12-2×3×1×=7,∴|AB|=.
所以甲、乙两人起初的距离是km.
(2)设甲、乙两人t小时后的位置分别是P、Q,
则|AP|=4t,|BQ|=4t,
当0≤t≤时,由余弦定理
|PQ|2=(3-4t)2+(1+4t)2-2(3-4t)(1+4t)·cos60°,
当t>时,
|PQ|2=(4t-3)2+(1+4t)2-2(4t-3)(1+4t)cos120°.
注意到上面两式实际上是统一的,
所以|PQ|2=(16t2-24t+9)+(16t2+8t+1)+(16t2-8t-3)=48t2-24t+7,
即|PQ|=.
(3)∵|PQ|=,
∴当t=时,|PQ|的最小值是2.
即在第15分钟末,两人的距离最短.
|AB|2=|OA|2+|OB|2-2|OA|·|OB|·cos60°
=32+12-2×3×1×=7,∴|AB|=.
所以甲、乙两人起初的距离是km.
(2)设甲、乙两人t小时后的位置分别是P、Q,
则|AP|=4t,|BQ|=4t,
当0≤t≤时,由余弦定理
|PQ|2=(3-4t)2+(1+4t)2-2(3-4t)(1+4t)·cos60°,
当t>时,
|PQ|2=(4t-3)2+(1+4t)2-2(4t-3)(1+4t)cos120°.
注意到上面两式实际上是统一的,
所以|PQ|2=(16t2-24t+9)+(16t2+8t+1)+(16t2-8t-3)=48t2-24t+7,
即|PQ|=.
(3)∵|PQ|=,
∴当t=时,|PQ|的最小值是2.
即在第15分钟末,两人的距离最短.
练习册系列答案
相关题目