题目内容
已知a为实数,函数f(x)=(x2+1)(x+a),若f′(-1)=0,求函数y=f(x)在
上的最大值和最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608307509.png)
f(x)在
上的最大值为f(1)=6,最小值为f
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608353440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608322491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608338491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608353440.png)
试题分析:解: f′(x)=3x2+2ax+1. ..1分
∵f′(-1)=0,∴3-2a+1=0,即a=2 1分
∴f′(x)=3x2+4x+1=3
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608369549.png)
由f′(x)≥0,得x≤-1或x≥-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608385327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608385327.png)
因此,函数f(x)的单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608416497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608431440.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608447444.png)
∴f(x)在x=-1取得极大值f(-1)=2,
f(x)在x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608385327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608478410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608494484.png)
又∵f
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608338491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608353440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608494484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608353440.png)
∴f(x)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608322491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608338491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011608353440.png)
点评:主要是考查了函数的单调性的判定和求解最值的运用,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目