题目内容
【题目】已知椭圆 的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF= ,则C的离心率e= .
【答案】
【解析】解:设椭圆的右焦点为F',连接AF'、BF'
∵AB与FF'互相平分,∴四边形AFBF'为平行四边形,可得|AF|=|BF'|=6
∵△ABF中,|AB|=10,|AF|=6,cos∠ABF= ,
∴由余弦定理|AF|2=|AB|2+|BF|2﹣2|AB|×|BF|cos∠ABF,
可得62=102+|BF|2﹣2×10×|BF|× ,解之得|BF|=8
由此可得,2a=|BF|+|BF'|=14,得a=7
∵△ABF中,|AF|2+|BF|2=100=|AB|2
∴∠AFB=90°,可得|OF|= |AB|=5,即c=5
因此,椭圆C的离心率e= =
所以答案是:
练习册系列答案
相关题目
【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如表所示((吨)为买进蔬菜的数量,(天)为销售天数):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)根据上表数据在所给坐标系中绘制散点图,并用最小二乘法求出关于的线性回归方程;
(2)根据(Ⅰ)中的计算结果,该蔬菜商店准备一次性买进25吨,预计需要销售多少天?
(参考数据和公式:,,,, ,.)