题目内容
【题目】设等差数列{an}的前n项和为Sn , 且S4=4S2 , a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn且 (λ为常数).令cn=b2n(n∈N*)求数列{cn}的前n项和Rn .
【答案】
(1)解:设等差数列{an}的首项为a1,公差为d,由a2n=2an+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①
再由S4=4S2,得 ,即d=2a1②
联立①、②得a1=1,d=2.
所以an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1
(2)解:把an=2n﹣1代入 ,得 ,则 .
所以b1=T1=λ﹣1,
当n≥2时, = .
所以 , .
Rn=c1+c2+…+cn= ③
④
③﹣④得: =
所以 ;
所以数列{cn}的前n项和
【解析】(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{an}的通项公式;(2)把{an}的通项公式代入 ,求出当n≥2时的通项公式,然后由cn=b2n得数列{cn}的通项公式,最后利用错位相减法求其前n项和.
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:或;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
【题目】某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的60名学生,得到数据如下表:
喜欢统计课程 | 不喜欢统计课程 | 合计 | |
男生 | 20 | 10 | 30 |
女生 | 10 | 20 | 30 |
合计 | 30 | 30 | 60 |
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选3人,求恰有2个男生和1个女生的概率.
下面的临界值表供参考:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)