题目内容
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问部分职工,根据被访问职工对该部门的评分,绘制频率分布直方图(如图所示).
(1)求频率分布表中①、②、③位置相应数据,并在答题纸上完成频率分布直方图;
组号 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 5 | 0.050 |
第2组 | [60,70) | ① | 0.350 |
第3组 | [70,80) | 30 | ② |
第4组 | [80,90) | 20 | 0.200 |
第5组 | [90,100] | 10 | 0.100 |
合计 | ③ | 1.00 |
(2)为进一步了解情况,该企业决定在第3,4,5组中用分层抽样抽取5名职工进行座谈,求第3,4,5组中各自抽取的人数;
(3)求该样本平均数 .
【答案】
(1)解:5÷0.05=100,100×0.35=35,30÷100=0.030
故①35②0.300③100,其频率分布直方图如图所示:
(2)解:第3,4,5组共有60名学生,第3,4,5组的频数之比为:30:20:10=3:2:1,
则第3组抽取的人数为 人;第4组为 人;第5组为 人.
(3)解:样本平均数
【解析】(1)根据频率= 即可求出,并画出相应的图象即可,(2)根据分层抽样即可求出相对应的人数,(Ⅲ)根据平均数的定义即可求出.
【考点精析】本题主要考查了频率分布直方图和平均数、中位数、众数的相关知识点,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据才能正确解答此题.