ÌâÄ¿ÄÚÈÝ
7£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{\frac{1}{|x-1|}£¬x¡Ù1}\\{1£¬x=1}\end{array}}$£¬Èôº¯Êýh£¨x£©=f2£¨x£©+bf£¨x£©+$\frac{1}{3}$ÓÐÎå¸ö²»Í¬µÄÁãµãx1£¬x2£¬x3£¬x4£¬x5£¬Ôòx12+x22+x32+x42+x52µÄֵΪ£¨¡¡¡¡£©A£® | $\frac{{2{b^2}+2}}{b^2}$ | B£® | 16 | C£® | 25 | D£® | 15 |
·ÖÎö ¸ù¾Ýº¯Êýf£¨x£©µÄ±í´ïʽ¿É¶Ôx·Öx=1Óëx¡Ù1ÌÖÂÛ£¬ÓÉ·½³Ìf2£¨x£©+bf£¨x£©+$\frac{1}{3}$=0·Ö±ðÇóµÃx1¡¢x2¡¢x3¡¢x4¡¢x5£¬´Ó¶ø¿ÉÇóµÃÔòx12+x22+x32+x42+x52µÄÖµ£®
½â´ð ½â£º¢ÙÈôx=1£¬f£¨x£©=1£¬¹Ê12+b+$\frac{1}{3}$=0£¬b=-$\frac{4}{3}$£»
¢ÚÈôx¡Ù1£¬f£¨x£©=$\frac{1}{|x-1|}$£¬·½³Ìf2£¨x£©+bf£¨x£©+$\frac{1}{3}$=0¿É»¯Îª£¨$\frac{1}{|x-1|}$-1£©•£¨$\frac{1}{|x-1|}$-$\frac{1}{3}$£©=0£¬
¡à$\frac{1}{|x-1|}$=1»ò$\frac{1}{|x-1|}$=$\frac{1}{3}$£¬
½â$\frac{1}{|x-1|}$=1µÃ£ºx=0»òx=2£»½â$\frac{1}{|x-1|}$=$\frac{1}{3}$µÃ£ºx=-2»òx=4£»
¡àx12+x22+x32+x42+x52=12+02+22+£¨-2£©2+42=25£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²é¸ùµÄ´æÔÚÐÔ¼°¸ùµÄ¸öÊýÅжϣ¬¹Ø¼üÊÇͨ¹ý¶Ôx·Öx=1Óëx¡Ù1ÌÖÂÛ£¬ÓÉ·½³Ìf2£¨x£©+bf£¨x£©+$\frac{1}{3}$=0·Ö±ðÇóµÃx1¡¢x2¡¢x3¡¢x4¡¢x5£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®¹ýµãP£¨1£¬1£©µÄÖ±Ïß±»Ô²x2+y2=4½ØµÃµÄÏÒÈ¡µÃ×îСֵ£¬Ôò¸ÃÖ±Ïߵķ½³ÌΪ£¨¡¡¡¡£©
A£® | x+y-2=0 | B£® | y-1=0 | C£® | x-y=0 | D£® | x+3y-4=0 |
19£®Èô¦Á+¦Â=$\frac{¦Ð}{4}$£¬Ôò£¨tan¦Á+1£©•£¨tan¦Â+1£©=£¨¡¡¡¡£©
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 6 |