题目内容
15.设a,b为正数,且a<b,记$P=\frac{a}{b}$,$Q=\frac{a+m}{b+m}$(m>0),则( )A. | P=Q | B. | P>Q | ||
C. | P<Q | D. | P,Q大小关系不确定 |
分析 利用作差法即可比较大小.
解答 解:Q-P=$\frac{a+m}{b+m}$-$\frac{a}{b}$=$\frac{ab+bm-ab-am}{b(b+m)}$=$\frac{m(b-a)}{b(b+m)}$,
∵a,b为正数,且a<b,m>0,
∴Q-P>0,
∴P<Q,
故选:C.
点评 本题考查了利用作差法比较不等式的大小,属于基础题.
练习册系列答案
相关题目
8.函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}\right.$则f(f($\sqrt{2}$))等于( )
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | $1+\sqrt{2}$ |
7.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在[-1,3]上的解集为
( )
( )
A. | (1,3) | B. | (-1,1) | C. | (-1,0)∪(1,3) | D. | (-1,0)∪(0,1) |
3.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)
(1)估计该班同学中,参加排球兴趣小组的同学的比例;
(2)请根据数据画出列联表的等高条形图,并通过条形图判断参加“篮球小组”或“排球小组”与性别是否有关?
(3)请根据题中数据,判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
下面临界值表供参考:
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
篮球 | 排球 | 总计 | |
男同学 | 16 | 6 | 22 |
女同学 | 8 | 12 | 20 |
总计 | 24 | 18 | 42 |
(2)请根据数据画出列联表的等高条形图,并通过条形图判断参加“篮球小组”或“排球小组”与性别是否有关?
(3)请根据题中数据,判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
下面临界值表供参考:
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k2 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
10.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:
附表:
参照附表,下列结论正确的是( )
感染 | 未感染 | 总计 | |
服用 | 10 | 40 | 50 |
未服用 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
A. | 在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关” | |
B. | 在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关” | |
C. | 有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关” | |
D. | 有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关” |
20.已知X和Y是两个分类变量,由公式K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算出K2的观测值k约为7.822根据下面的临界值表可推断( )
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. | 推断“分类变量X和Y没有关系”犯错误的概率上界为0.010 | |
B. | 推断“分类变量X和Y有关系”犯错误的概率上界为0.010 | |
C. | 有至少99%的把握认为分类变量X和Y没有关系 | |
D. | 有至多99%的把握认为分类变量X和Y有关系 |
7.已知集合A={x|x+1>0},B={x|x2-x<0},则A∪B=( )
A. | {x|x>-1} | B. | {x|-1<x<1} | C. | {x|0<x<1} | D. | {x|-1<x<0} |